

<u>ShriVaishnavVidyapeethVishwavidyalaya</u> <u>B.Tech.(CSE) in Cloud and Mobile Computing (in association with IBM)</u>

SEMESTER-I

COURSE CODE	Category			Т	EACHIN	G & EVA	LUATIO	N SCH	EME		
]	THEORY		PRAC	ΓICAL				
		COURSE NAME	END SEM University Exam Two Term Exam Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	Р	CREDITS		
BTMA 101		Applied Mathematics - I	60	20	20	-	-	3	1	-	4

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P – Practical; C - Credit;

*Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:

To introduce the students with the Fundamentals of the Differential, Integral, Vector Calculus and Numerical Analysis

Course Outcomes:

After the successful completion of this course students will be able to

- 1. Understand and apply the basics of the differential calculus.
- 2. Know the fundamental principles of the integral calculus and apply them.
- 3. Apply the techniques in the numerical analysis.
- 4. Know the numerical solution of the system of linear algebraic equations.
- 5. Understand and apply the basics of the vector calculus.

UNIT I

Differential Calculus: Limits of functions, continuous functions, uniform continuity, montone and inverse functions. Differentiable functions, Rolle'sTheorem, mean value theorems and Taylor's theorem, power series. Functions of several variables, partial derivatives, chain rule, Tangent planes and normals, Maxima, minima, saddle points, Lagrange multipliers, exact differentials

UNIT II

Integral Calculus:Riemann integration, fundamental theorem of integral calculus, improper integrals. Application to length, area, volume, surface area of revolution, multiple integrals with application to volume, surface area, Change of variables.

UNIT III

Numerical Analysis:Number Representation and Errors: Numerical Errors; Floating Point Representation; Finite Single and Double Precision Differences; Machine Epsilon; Significant Digits. Numerical Methods for Solving Nonlinear Equations: Method of Bisection, Secant Method, False

Zoravas

Joint Registrar the Weishnaw Weyappeth Vialwasidyalay

<u>ShriVaishnavVidyapeethVishwavidyalaya</u> <u>B.Tech.(CSE) in Cloud and Mobile Computing (in association with IBM)</u>

Position, Newton-Raphson's Method, Multidimensional Newton's Method, Fixed Point Method and their convergence.

UNIT IV

Numerical Analysis : Numerical Methods for Solving System of Linear Equations: Norms; Condition Numbers, Forward Gaussian Elimination and Backward Substitution; Gauss-Jordan Elimination; FGE with Partial Pivoting and Row Scaling; LU Decomposition; Iterative Methods: Jacobi, Gauss Siedal; Power method and QR method for Eigen Value and Eigen vector.

UNIT V

Vector Calculus:Gradient and directional derivative. Divergence and Curl of Vector point function, line and surface integrals. Green's, Gauss' and Stokes 'theorems and their applications

Text Books:

- 1. T. M. Apostol, Calculus, Volume I, 2nd Ed, Wiley, 1967.
- 2. T. M. Apostol, Calculus, Volume II, 2nd Ed, Wiley, 1969.
- 3. K. E. Atkinson, Numerical Analysis, John Wiley, Low Price Edition (2004).
- 4. S. D. Conte and C. de Boor, Elementary Numerical Analysis An Algorithmic Approach, McGraw-Hill, 2005.
- 5. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, Delhi

References:

- 1. R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis, 5th Ed, Wiley, 1999.
- 2. J. Stewart, Calculus: Early Transcendentals, 5th Ed, Thomas Learning (Brooks/ Cole), Indian Reprint, 2003.
- 3. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 2nd Edition, Texts in Applied Mathematics, Vol. 12, Springer Verlag, 2002.
- 4. J. D. Hoffman, Numerical Methods for Engineers and Scientists, McGraw-Hill, 2001.
- 5. M.K Jain, S.R.K Iyengar and R.K Jain, Numerical methods for scientific and engineering computation (Fourth Edition), New Age International (P) Limited, New Delhi, 2004.
- 6. S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists, McGraw-Hill2008.

Joint Registrar

Shri Weishnaw Weisapeeth Vallwavidyalay Incom

COURSE CODE	Category			Т	EACHIN	G & EVA	LUATIO	N SCH	EME								
			THEORY PRAC	ГICAL													
		COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	Р	CREDITS						
BTPH1 01		Applied Physics	60	20	20	30	20	3	1	2	5						

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P – Practical; C – Credit.

***Teacher Assessment** shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:

- 1. To develop the comprehensive understanding of laws of physics.
- 2. To develop ability to apply laws of physics for various engineering applications.
- 3. To develop the experimental skills, ability to analyze the data obtained experimentally to reach substantiated conclusions.

Course Outcomes:

- 1. Student will be able to comprehend laws of physics.
- 2. Student will be able to apply laws of physics for various engineering applications.
- 3. Student will be able to determine physical parameter experimentally and will be able to analyze the data obtained experimentally to draw substantiate conclusions.

UNIT I

Quantum Physics:Introduction to Quantum hypothesis, Matter wave concept, Wave Group and Particle velocity and their relations, Uncertainty principle with elementary proof and applications to microscope and single slit, Compton Effect, Wave function and its physical significance. Development of time dependent and time independent Schrodinger wave equation, Applications of time independent Schrodinger wave equation.

UNIT II

Solid State Physics:Free electron model, Qualitative Analysis of Kronig Penney Model, Effective mass, Fermi level for Intrinsic and Extrinsic semiconductors, P-N junction diode, Zener diode, Tunnel diode, Photodiode, Solar- cells, Hall Effect, Introduction to Superconductivity, Meissner effect, Type I & II Superconductors.

UNIT III

Nuclear Physics: Nuclear Structure & Properties Nuclear models: Liquid drop with semi-empirical mass formula & shell model. Particle accelerators: Cyclotron, Synchrotron, Betatron. Counters and Detectors: Giger-Muller counters, Bainbridge Mass Spectrograph and Auston Mass Spectrograph.

UNIT IV

Laser & Fiber Optics:Stimulated and Spontaneous Emission, Einstein's A&B Coefficients, Population Inversion, Pumping, Techniques of Pumping, Optical Resonator, Properties and Applications of Laser, Ruby, Nd:YAG, He-Ne lasers.

Zoravas

Joint Registrar the Weishnaw Weyappeth Vialwasidyalay

Introduction to Optical fibre, Acceptance angle and cone, Numerical Aperture, V- Number, Ray theory of propagation through optical fibre, Pulse dispersion, applications of optical fibre.

UNIT V

Wave Optics:Introduction to Interference, Fresnel's Bi-prism, Interference in Thin films, Newton's rings experiment, Michelson's interferometer and its application, Introduction to Diffraction and its Types, Diffraction at single slit, double slit, resolving power, Rayleigh criterion, Resolving power of grating, Concept of polarized light, Double refraction, quarter and half wave plate, circularly & elliptically polarized light.

Textbook Books:

- 1. Engineering Physics by Dr. S. L. Gupta and Sanjeev Gupta, DhanpatRai Publication, New Delhi.
- 2. Engineering Physics by Navneet Gupta, DhanpatRai Publication, New Delhi.
- 3. Engineering Physics by H. J. Sawant, Technical Publications, Pune, Maharastra.
- 4. Engg Physics by M.N. Avdhanulu& P.G. Kshirsagar, S.Chand&Co.Edition (2010).
- 5. Fundamentals of Physics by Halliday, Wiley, India.
- 6. Concepts of Modern Physics by Beiser, TMH, New Delhi.
- 7. Solid State Physics by Kittel, Wiley India.
- 8. Atomic and Nuclear physics by Brijlal and Subraminiyan.
- 9. LASERSs and Electro Optics by Christopher C. Davis, Cambridge Univ. Press (1996).
- 10. Optroelectronics an Introduction by J. Wilson &J.F.B.Hawkes, "" Prentice-Hall II Edition.
- 11. LASER theory and applications by A. K. Ghatak&Tyagarajan, TMH (1984).
- 12. Optics by Ghatak, TMH.

List of Experiemnts:

- 1. Measurement of radius of curvature "R" of convex lens by Newton's ring experiment.
- 2. Measurement of Numerical aperture of fiber by LASER.
- 3. Determination of Energy band gap 'Eg' of Ge using Four Probe method.
- 4. Measurement of Frequency of A.C. mains by electrically maintained vibrating rod.
- 5. Measurement of Resolving Power of Telescope.
- 6. Measurement of " λ " of LASER light source using Diffraction Grating.
- 7. Determination of Planck's constant by using photocell.
- 8. Determination of Energy band gap (Eg) using PN Junction Diode.
- 9. To determine the mass of cane sugar dissolved in water using half shade polarimeter.
- 10. To study forward and reverse characteristics of Zener diode.
- 11. To study forward and reverse characteristics of P-N diode.
- 12. To study characteristics of Photo diode.
- 13. To study characteristics of LDR.
- 14. μ and ω of given prism using spectrometer.
- 15. Measuring height of a given object using Sextant.

Zorowod

Chairperson Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya Indore

Joint Registrar Swi Withnay Weyspetth Vialwanidyaby' Incom

				Т	EACHIN	IG & EVA	LUATIO	N SCH	EME		
			THEORY			PRACTICAL					
COURSE CODE	Category	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	Р	CREDITS
BTCS1 02		Introduction to Computer Science and Engineering	60	20	20	-	50	3	-	2	4

 $Legends: \ L \ - \ Lecture; \ T \ - \ Tutorial/Teacher \ Guided \ Student \ Activity; \ P \ - \ Practical; \ C \ - \ Credit;$

*Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:

- 1. To introduce the fundamentals concepts of Computer System.
- 2. Understanding the basic concepts and features of various kinds of Operating Systems.
- 3. Learning the Concepts of Office Automation Tools (Like Word, Excel, Power-point, etc.)
- 4. To provide knowledge of Networking, Internet, Communication and Security.

Course Outcomes:

Upon completion of the subject, Students will be able to:

- 1. Understand the basic terminologies of Computer System.
- 2. Gain knowledge about various kinds of Operating Systems and their features.
- 3. Learn the Concepts of Office Automation Tools (Like Word, Excel, Power-point, etc.)
- 4. Understand Networking, Internet, Communication and Security.

UNIT I

Introduction to Computer Fundamentals: Introduction: What is Computer, Objectives, Hardware and software, Block Diagram of The Computer, Functions of the different Units, CPU(Central Processing Unit), Input unit, Output unit, Memory, Storage Devices, Representation of data and information, Computer Languages, Machine language, Assembly language, High level language, Number System and Conversion, Classification of Computers, History and Generations of Computer, Types of Computers, Characteristics of Computers, Introduction to Free and Open Source Software, Definition of Computer Virus, Types of Viruses, Use of Antivirus software. Applications of Computers: Home, Education and Training, Entertainment, Science, Medicine, Engineering etc.

UNIT II

The Operating System: The Graphical User Interface (GUI), Definition of Operating System, Objective, Types and functions of Operating Systems, Windows Operating System, Installing MS-Windows, Working with Windows Operating System, System Tools and Applications in windows,

Rojavos

Joint Registrar thei Valshnav Vicyapaeth Vialeezvidyalay

MS-DOS (Disk Operating System), Basic DOS commands, Switching Between DOS and Windows, Comparison of DOS and Windows, System Tools and Applications in MS-DOS, Other Operating Systems Unix, Linux etc.

UNIT III

Office Automation Tools-I: Word Processing Basics, Elements of word Processing and Working, MS-Office (Word, Access, Outlook, Front page etc), Objectives, Starting MS-Word, MS-Word Screen and its Components, Working with MS-Word, Menu Bar, Creating Documents, Using Templates, Saving a documents, Working with documents, Setting up pages of a document, Printing Documents with different options, Using Tables and Columns, Object Linking and Embedding, Hyperlink, Envelopes & Label Creation, Grammar & Spell Check, Mail Merge, Macro Creation, Previewing and Printing Documents.

UNIT IV

Office Automation Tools-II: Spread Sheet: Introduction to MS-Excel, Starting MS-Excel, Basics of Workbook and Spreadsheet, MS-Excel Screen and Its Components, Features of Excel, Elementary Working with MS-Excel, Manipulation of cells, Formatting of Spreadsheet and Cells, Formulas and Functions, Spread sheets for Small accountings, Previewing and Printing a Worksheet.

Power-point: Introduction to MS-PowerPoint, Starting MS-PowerPoint, Basics ofPowerPoint, MS-PowerPoint Screen and Its Components, Features of PowerPoint, Elementary, Elementary Working with MS-PowerPoint, Preparation of Slides, Creation of Presentation, Providing aesthetics, Slide Manipulation and Slide Show, Presentation of the Slides

UNIT V

Computer Communication and Internet: Computers and Communication: Introduction to Computer Networks, Internetand World Wide Web, Communication and Collaboration(Electronic Mail), Basic of electronic mail, Web Browsers and Servers, Introduction to HTML, Use of Computer in Commerce, Internet Applications, Electronic Data Interchange, Electronic Payment System, Internet Security, Privacy, Ethical Issues & Cyber Law.

Text Books:

- 1. Fundamentals of Computers: E Balagurusamy, TMH
- 2. Basic Computer Engineering: Silakari and Shukla, Wiley India
- 3. Fundamentals of Computers: V Rajaraman, PHI
- 4. Information Technology Principles and Application: Ajoy Kumar Ray & TinkuAcharya PHI.

5. Fundamentals of Computers: PKSinha.

References:

- 1. J. P. Tremblay and R.B. Bunt, "An Introduction of Com puter Science –AnAlgorithmic Approach", TMH.
- 2. Raja Raman V., "Fundamental of Computers" (4th edition.), Prentice Hall of India, New Delhi.
- 3. Trainer T., et al, "Computers", McGraw Hill.
- 4. Norton, Peter, "Introduction to Computers, Mc-Graw-Hill.

Rojavos

Joint Registrar thei Valshnav Vicyapaeth Vialeezvidealay

5. S.Jaiswal, "Fundamental of Computer & IT", Wiley dreamtech India.

List of Experiments:

- 1. Change the date and time of computer system using MS-DOS.
- 2. Creates the "test" directory in the directory you are currently in using MS-DOS.
- 3. Create a new user and give it Administrator privilege for Microsoft window OS.
- 4. Create a MS-Word .doc file contain yours complete biodata.
- 5. Create a MS-Excel .xls file contain mark sheet of 10th and 12th Standards.
- 6. Display the student's result into a chart using MS-Excel.
- 7. Create a MS-Power Point Presentation .ppt file covers the topic "Computer's Evolution".
- 8. Create a MS-Power Point Presentation .ppt file covers the topic "social responsibility".
- 9. Create a MS-Access database .mdb file to store the results of students.
- 10. Delete history from web browser in MS windows.

Zorowod Chairperson

Joint Registrar

Joint Registrat sixi Withow Wcyapath Valeenidyahy incom

COURSE CODE				Т	EACHIN	G & EVA	LUATIO	N SCH	EME									
			ſ	THEORY		PRAC	ГICAL											
	Category	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	Р	CREDITS							
BTEC 104		Digital Logic & Circuit Design	60	20	20	30	20	3	1	2	5							

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P – Practical; C - Credit;

*Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:-

The objective of this course is to-

- 1. Use of Boolean algebra and Karnaugh Map to simplify logic function.
- 2. Describe the operation of different Combinational and Sequential Logic Circuits.

Course Outcomes:-

After completion of this course the students will be able to-

- 1. Design an optimal digital logic circuit to meet the given specifications.
- 2. Evaluate the performance of the given digital logic circuit based on specific criteria for reliable system implementation.

UNIT I

Number System & Codes: Introduction to number systems, Binary numbers, Octal & Hexadecimal Numbers, Number base Conversion, Signed binary numbers : 1's Complement & 2's Complement representation and their arithmetic operation, Floating point representation, binary codes, BCD,ASCII, EBCDIC, Gray codes, Error detecting and Correcting codes, Hamming codes.

UNIT II

Boolean algebra and Logic gates: Introduction, Logic operations, Axioms and laws of Boolean algebra, Demorgan's theorem, Boolean functions, Canonical and standard forms. Logic gates and their applications, universal gates, NAND-NOR implementation of logic functions. Minimization techniques for logic functions-K-map, Tabular / QuineMcCluskey method.

UNIT III

Combinational logic: Arithmetic circuits- Half adder, Full adder, Halfsubtractor, Full subtractor, Parallel and Serial adder, BCD adder, Multiplexer, De-multiplexer, Encoder & Decoder.

Loiouos

Joint Registrar the Withow Vicyapeeth Value aviduals

UNIT IV

Sequential logic: Introduction, Latch and Flip Flop- S-R, D, JK and T, State diagram, characteristic equation, state table and excitation table, Flip flop conversion, applications of Flip flop, Counters, Registers.

UNIT V

Semiconductor Memories and A/D and D/A converters: Semiconductor Memory – RAM, ROM-Organization, operation and their Types, PLD- PAL, PLA, PROM, FPGA, Analog to Digital (A/D)and Digital to Analog (D/A) converters and their types.

Text Books:

- 1. M. Morris Mano, "Digital Logic and Computer Design", Pearson Education, 2016.
- 2. S Salivahanan and S Arivazhagan: Digital Circuits and Design,4th Edition, Vikas Publishing House, 2012.

Reference Books:

- 1. A. Anand Kumar, "Fundamentals of Digital Circuits", 4th Edition, PHI, 2016.
- 2. Floyd and Jain, "Digital Fundamentals", 10th Edition, Pearson Education India, 2011.
- 3. Roland J.Tocci, Widmer, Moss, "Digital Systems Principles and Applications", 10th Edition, Pearson 2009.
- 4. Stephen Brown, ZvankoVranesic, "Fundamentals of Digital Logic Design", 3rd Edition, McGraw Hill, 2017.

List of experiments:

- 1. To study and test of operation of all logic gates for various IC"s (IC7400,IC7403,IC408,IC74332,IC7486).
- 2. Verification of DeMorgan's theorem.
- 3. To construct of half adder and full adder.
- 4. To construct of half subtractor and full subtractor circuits.
- 5. Verification of versatility of NAND gate.
- 6. Verification of versatility of NOR gate.
- 7. Design a BCD to excess 3code converter.
- 8. Design a Multiplexer/ Demultiplexer
- 9. Analysis of various flip flops with Preset and Clear capability.
- 10. Design of Johnson and Ring counter.
- 11. Design of synchronous and asynchronous up/down counters.

Zorowod

Chairperson Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya Indore

Joint: Registrar Stel Withnay Weyspeeth Valeeusidyaby: Incom

	Category COLRSENAME			Т	TEACHIN	IG & EVA	LUATIO	N SCH	EME									
]	THEORY		PRAC													
COURSE CODE		COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	Р	CREDITS							
BTCE 103		Applied Mechanics	60	20	20	30	20	3	1	2	5							

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P – Practical; C - Credit;

*Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:

The Students (A) will be Able to familiarize with different branches of mechanics(B) with emphasis on their analysis and application to practical engineering problems(C) efficiently & effectively (D)

Course Outcomes:

After completion of this course the students are expected to be able to demonstrate followingknowledge, skills and attitudes

The students will be able to

- 1. To apply knowledge of mathematics, science in engineering.
- 2. To identify, formulate, and solve engineering problems
- 3. Demonstrate various types of forces and their analysis.
- 4. Demonstrate shear force and bending moment on structural member i.e. beams
- 5. Demonstrate centre of gravity and moment of inertia determination of different geometrical shaped figures.

UNIT I

Static & Dynamic Forces:Introduction to Engineering Mechanics, Classification of Engineering Mechanics, Statistics, Dynamics, Kinematics, Kinetics etc. Fundamental Laws of Mechanics. Introduction to Dynamics, Basic Concepts and Terms Used in Dynamics, Motion, Types of Motion.

Force, Pressure and Stress, Free Body Diagram, Bow's Notation, Characteristics and Effects of a Force, System of Forces, Resolution of a Force, Composition of Forces, Resultant / Equilibrant Force,

UNIT II

Law of Parallelogram of Forces, Law of Triangle of Forces, Polygon Law of Forces, Lami's Theorem, Equilibrium of a Body Under Two / Three/More Than Three Forces. Law of Superposition of Forces. Moment of a Force, Principle of Moments/ Varignon's Theorem, Parallel Forces, Resultant of Parallel Forces, Couple, Moment of a Couple, Resolution of Force into a Couple.

UNIT III

Zoravas

Chairperson Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya Indore

Joint Registrar the Weishnaw Weyappeth Vialwasidyalay

Analysis of Framed Structure:Frame, Types of frame, Truss, Types of truss, Analysis of Truss, Various methods of Analyzing the truss, Numerical analysis of truss.

UNIT IV

Beams: Types of Beams: Simply Supported Beam, Overhanging Beam, Cantilever Beam. Types of Supports of a Beam or Frame: Roller, Hinged and Fixed Supports. Load on the Beam or Frame: Different Types of Loading. Support Reaction of a Beam, Shear force, Bending Moment.

UNIT V

CG and MI: Centroid, Centre of Gravity, Determination of Centroid of Simple Figures, Centroid of Composite Sections. Centre of Gravity of Solid Bodies, Area Moment of Inertia: Basic Concept of Inertia, Definition of Moment of Inertia, Theorems of Moment of Inertia, Radius of Gyration, Polar Moment of Inertia of Standard Sections, Moment of Inertia of Composite Section, Principal Moment of Inertia, Mass Moment of Inertia.

References:

- 1. Prasad I.B., Applied Mechanics, Khanna Publication.
- 2. SheshaPrakash and Mogaveer; Elements of Civil Engg&Engg. Mechanics; PHI
- 3. S.P, Timoshenko, Mechanics of stricture, East West press Pvt.Ltd.
- 4. R.C. Hibbler Engineering Mechanics: Statics & Dynamics.
- 5. A. Boresi& Schmidt- Engineering Mechines- statics dynamics, Thomson' Books
- 6. R.K. Rajput, Engineering Mechanics S.Chand& Co

List of Experiments:

- 1. To verify the law of Triangle of forces and Lami's theorem.
- 2. To verify the law of parallelogram of forces.
- 3. To verify law of polygon of forces
- 4. To find the support reactions of a given truss and verify analytically.
- 5. To determine support reaction and shear force at a given section of a simply Supported beam and verify in analytically using parallel beam apparatus.
- 6. To determine the moment of inertia of fly wheel by falling weight method.
- 7. To verify bending moment at a given section of a simply supported beam.
- 8. Study of Various Beams and their Loading conditions.
- 9. Study of Newton's laws of motion.
- 10. Study of Newton's law of Gravitation.

Joint: Registrar styl Withnay Wcyapeth Valenzyldyalay Incom

COURSE CODE		TEA THEORY		Т	EACHIN	IG & EVA	LUATIO	N SCH	EME								
				PRAC	ГICAL												
	Category	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	Р	CREDITS						
BTCS1 05		Software Foundation and Programming 1 (with 'C')	-	-	-	30	20	-	-	2	1						

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P – Practical; C - Credit;

*Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Rojowod Chairperson

Joint Registrar

				Т	EACHIN	G & EVA	LUATIO	N SCH	EME								
			[THEORY		PRAC	ГICAL										
COURSE CODE	Category	COURSE NAME	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	Th	Т	Р	CREDITS						
BTHU 101		Communication Skills-I	-	-	-	-	50	-	-	4	2						

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P – Practical; C - Credit;

*Teacher Assessment shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

The Language Lab focuses on the production and practice of sounds of language and familiarises the students with the use of English in everyday situations and contexts.

Course Objectives:

1. To help the students cultivate the habit of reading passages from the computer monitor, thus providing them with the required facility to face computer-based competitive exams such GRE, TOEFL, GMAT etc.

2. To train them to use language effectively to face interviews, group discussions, public speaking.

Course Outcome :

1. The student will be able to learn better pronunciation through stress on word accent, intonation, and rhythm.

2. The student will be able to initiate them into greater use of the computer in resume preparation, report writing, format-making etc.

Syllabus:

The following course content is prescribed for the English Language Laboratory sessions:

- 1. Introduction to Phoneticsthe Sounds of English- Vowels, Diphthongs & Consonants.
- 2. Reading Comprehension
- 3. Situational Dialogues / Role Play.
- 4. Oral Presentations-
- 5. Extempore.
- 6. 'Just A Minute' Sessions (JAM).
- 7. Describing Objects / Situations / People.
- 8. Debate
- 9. Telephoning Skills.
- 10. Group Discussions.

References:

Joint Registrar Styl Valuation Vicyopeth Valuation

- i) Spoken English (CIEFL) in 3 volumes with 6 cassettes, OUP.
- ii) English Pronouncing Dictionary Daniel Jones Current Edition with CD.

iii)Spoken English- R. K. Bansaland J. B. Harrison, Orient Longman 2006 Edn.

iv) Speaking English Effectively by Krishna Mohan & NP Singh (Macmillan)

v) A Practical Course in English Pronunciation, (with two Audio cassettes) by J. Sethi,

KamleshSadanand& D.V. Jindal, Prentice-Hall of India Pvt. Ltd., New Delhi.

vi) A text book of English Phonetics for Indian Students by T.Balasubramanian (Macmillan)

Suggested Software:

i) Aristoclass
ii) Hiclass
iii)K-VAN solutions
iv)Globarina
v) Console OCL-908W
vi)HistudioMHi Tech

Minimum Requirement:

The English Language Lab shall have two parts:

i) The Computer aided Language Lab for 60 students with 60 systems, one teacher /instructor console, LAN facility and English language software for self- study by learners.

ii) The Communication Skills Lab with movable chairs and audio-visual aids with a P.A System, a T. V., a digital stereo -audio & video system and camcorder etc.

System Requirement (Hardware component):

Computer network with Lan with minimum 60 multimedia systems with the following specifications:

- i) P IV Processor
- a) Speed 2.8 GHZ
- b) RAM 512 MB Minimum
- c) Hard Disk 80 GB
- ii) Headphones of High quality

Distribution of marks

i) The practical examinations for the English Language Laboratory shall be conducted as per the University norms prescribed for the core engineering practical sessions.

ii) For the Language lab sessions, there shall be a continuous evaluation during the year for 20 sessional marks and 30 year-end Examination marks.

iii) Of the 20 marks, 10 marks shall be awarded for day-to-day work and 10 marks to be awarded by conducting Internal Lab Test(s). The year- end Examination shall be conducted by the teacher concerned with the help of another member of the staff of the same department of the same institution.

Zorowod

Joint Registrar the Withow Weyapeeth Valuesidyaby